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Background Recap:

Section W11

Note: This week’s background is mostly in the second part of the lecture



Experiment setup: training the BMI decoder
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Different neural activity patterns can give rise to
the same command
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Animals were trained on
two tasks, center-out and
obstacle avoidance.

Because the decoder is
fixed for both tasks, the
motor command produced
by the neural activity could
be compared across tasks
and trials.



Are invariant dynamics used to control different
movements?

Researchers wanted to test whether the invariant
dynamics in the neural activity they recorded
produced subsequent motor commands in a way that
was relevant to the task and condition of each trial.
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Can we demonstrate a causal

relationship between invariant

dynamics in motor cortex and
a task-relevant command?
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Section Paper:

Invariant neural dynamics drive commands
to control different movements

Vivek R. Athalye,’-7:%14* Preeya Khanna,?7-'%* Suraj Gowda,* Amy L. Orsborn,*'" Rui M. Costa,-812*
and Jose M. Carmena*:°:5:8,13,*

It has been proposed that the nervous system has the capacity to generate a wide variety of movements because it reuses some
invariant code. Previous work has identified that dynamics of neural population activity are similar during different movements,
where dynamics refer to how the instantaneous spatial pattern of population activity changes in time. Here, we test whether
invariant dynamics of neural populations are actually used to issue the commands that direct movement. Using a brain-machine
interface (BMI) that transforms rhesus macaques’ motor-cortex activity into commands for a neuroprosthetic cursor, we discovered
that the same command is issued with different neural-activity patterns in different movements. However, these different patterns
were predictable, as we found that the transitions between activity patterns are governed by the same dynamics across
movements. These invariant dynamics are low dimensional, and critically, they align with the BMI, so that they predict the specific
component of neural activity that actually issues the next command. We introduce a model of optimal feedback control (OFC) that
shows that invariant dynamics can help transform movement feedback into commands, reducing the input that the neural
population needs to control movement. Altogether our results demonstrate that invariant dynamics drive commands to control a
variety of movements and show how feedback can be integrated with invariant dynamics to issue generalizable commands.



Figure 3. The same command is issued by different neural-activity
patterns in different movements
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Figure 3. The same command is issued by different neural-activity
patterns in different movements
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What can you say about the relationship between position sub-trajectory and
population distance?

The further a sub-trajectory is from the middle of the trajectory distribution, the more the neural
activity producing that command differs from the average activity to produce the command.



Figure 4. Invariant dynamics predict the different neural activity
patterns used to issue the same command
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Figure 4. Invariant dynamics predict the different neural activity
patterns used to issue the same command
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There is very little decline in neural activity prediction accuracy when either the command or the
condition is removed. What does this suggest about the role that invariant dynamics play in this circuit?

Invariant dynamics drive a large portion of the neural response in the circuit, as removing task-related inputs
does not disrupt activity predictions.



Figure 5. Invariant dynamics alignh with the decoder, propagating
neural activity to issue the next command
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Figure 5. Invariant dynamics alignh with the decoder, propagating
neural activity to issue the next command
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How does this predictive model test differ from the one in Figure 4?
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The previous model decodes the neural activity for a command at time t, since many activity patterns drive the same

command.

This model predicts the command and neural activity at t+1.



Figure 6. An OFC model reveals that invariant dynamics reduce the
input that a neural population needs to issue commands based on
feedback
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Figure 6. An OFC model reveals that invariant dynamics reduce the
input that a neural population needs to issue commands based on
feedback
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Summarize the two main findings from this figure (this is a boring question, | will try to
find a better one).

The optimal feedback controller results in more efficient inputs to produce movement. The
population distance across commands only resembles the in vivo data if an optimal
feedback controller is included in the model.



Paper roundup

* Monkeys were trained to control a cursor in several tasks using a BMI
based on neural activity recorded in motor cortex.

* Invariant dynamics in the recorded neurons could predict the neural
activity that was used to produce a motor command, even when task
inputs were removed from the model.

* Invariant dynamics alter neural activity in dimensions relevant to the
decoder, demonstrating a causal link between invariant dynamics and
motor commands (at least in this BMI setting).

» Adding an optimal feedback controller to an in silica model of invariant
dynamics trained to perform the center out tasks reduced the amount of
inputs needed for successful execution.



What did we learn? What questions do we have?

e What points do they make in the discussion?
e Is anything unclear?

e What would you do next if you had to desigh an experiment?

® Invariant dynamics — how irrelevant is it? It’s related to the decoder they defined.



Muscle SpikerBox Demo!
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Muscle SpikerBox

The muscle spikerbox is an electromyograph powered by an arduino.



http://www.youtube.com/watch?v=E2dALNLa8_g

Muscle SpikerBox
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Docs:https://backyardbrains.com/products/files/EMG _insert.pdf



Lab-grown brain cells play video game
Pong

12 October 2022 «{ Share

By Pallab Ghosh, Science correspondent

Cortical Labs

These 800,000 lab-grown brain cells can play a 1970s video game, albeit badly



EMG Pong

We will be using the SpikerBox today to make a very simple BMI to play
pong on your computer!

If you have not already downloaded the repository from the course github please do
so now. Once downloaded, build the conda environment specified in the docs.

Also be sure to download the SpikerBox PC app.
http://www.backyardbrains.com/experiments/files/Backyard Brains Neuron Recorder
Install.air.zip



http://www.backyardbrains.com/experiments/files/Backyard_Brains_Neuron_Recorder_Install.air.zip
http://www.backyardbrains.com/experiments/files/Backyard_Brains_Neuron_Recorder_Install.air.zip
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The SpikerBox PC app

The SpikerBox app is used visualize the your EMG activity in real time.

It can record from multiple data streams at once, if you have the right
hardware.

It can also perform online thresholding for waveform visualization.

The one thing it can’t do, is stream easily to other software, which is why we
will be using our own streaming script for pong.



EMG Pong Instructions

These instructions can also be found in the repository docs. Do not hesitate
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to ask for help if needed, have fun!

Create the conda environment.

Plug in the Muscle SpikerBox to a USB port on the computer and setup your
contacts

Activate the environment and open the spike_stream_threshold notebook.
Run through the notebook and determine some thresholds you want to try for

game control.

a. Once you are finished, make sure to stop the kernel to make the serial port available
for the game.

Open the stream.py file and edit the variables at the top of the code.

Run the script, and start playing!



Building a better BMI

While you are working with the BMI controlled pong, consider how
you might alter or optimize this system. Here are a few questions to
consider:

The current game controls the paddle by sampling a running mean from the
EMG, how else could you threshold the controller?

Could you add a case that would allow the paddle to stay in place, instead of
just rising or falling?

The game update speed is linked to the stream buffer. Can you think of ways
to make the system faster?



